A Scalable Parallel Assembly for Irregular Meshes Based on a Block Distribution for a Parallel Block Direct Solver

نویسندگان

  • David Goudin
  • Jean Roman
چکیده

This paper describes a distribution of elements for irregular nite element meshes as well as the associated parallel assembly algorithm , in the context of parallel solving of the resulting sparse linear system using a direct block solver. These algorithms are integrated in the software processing chain EMILIO being developped at LaBRI for structural mechanics applications. Some illustrative numerical experiments on IBM SP2 validate this study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PaStiX: A Parallel Sparse Direct Solver Based on a Static Scheduling for Mixed 1D/2D Block Distributions

We present and analyze a general algorithm which computes an efficient static scheduling of block computations for a parallel L.D.L factorization of sparse symmetric positive definite systems based on a combination of 1D and 2D block distributions. Our solver uses a supernodal fan-in approach and is fully driven by this scheduling. We give an overview of the algorithm and present performance re...

متن کامل

Parallel Block-Diagonal-Bordered Sparse Linear Solvers for Electrical Power System Applications

Research is ongoing that examines parallel direct block-diagonal-bordered sparse linear solvers for irregular sparse matrix problems derived from electrical power system applications. Parallel block-diagonal-bordered sparse linear solvers exhibit distinct advantages when compared to current general parallel direct sparse matrix solvers. Our research shows that actual power system matrices can b...

متن کامل

A high performance two dimensional scalable parallel algorithm for solving sparse triangular systems

Solving a system of equations of the form Tx = y, where T is a sparse triangular matrix, is required after the factorization phase in the direct methods of solving systems of linear equations. A few parallel formulations have been proposed recently. The common belief in parallelizing this problem is that the parallel formulation utilizing a two dimensional distribution of T is unscalable. In th...

متن کامل

Parallel Numerical Solution of the Time-Harmonic Maxwell Equations

We develop a fully scalable parallel implementation of an iterative solver for the time-harmonic Maxwell equations with vanishing wave numbers. We use a mixed finite element discretization on tetrahedral meshes, based on the lowest order Nédélec finite element pair of the first kind. We apply the block diagonal preconditioning approach of Greif and Schötzau (Numer. Linear Algebra Appl. 2007; 14...

متن کامل

A Parallel Fast Direct Solver for the Discrete Solution of Separable Elliptic Equations

A parallel fast direct solver based on the Divide & Conquer method is considered for linear systems with separable block tridiagonal matrices. Such systems are obtained, for example, by discretizing the two{dimensional Poisson equation posed on rectangular domains with the continuous piecewise linear nite elements on nonuniform triangulated rectangular meshes. The Divide & Conquer method has th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000